ROLE OF BLOOD MYELOID AND PLASMACYTOID DENDRITIC CELLS IN CHRONIC RENAL FAILURE AND KIDNEY TRANSPLANTATION

Thesis submitted to the University of Adelaide in March 2006 for the degree of Doctor of Philosophy

by

Wai Hon Lim MBBS FRACP (nephrology)

Department of Medicine, University of Adelaide, Adelaide, Australia & Transplantation Immunology Laboratory and the Department of Nephrology and Transplantation, The Queen Elizabeth Hospital, Adelaide, Australia
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Contents</td>
<td>1</td>
</tr>
<tr>
<td>II. Abstract</td>
<td>XVIII</td>
</tr>
<tr>
<td>III. Thesis declaration</td>
<td>XX</td>
</tr>
<tr>
<td>IV. Acknowledgement</td>
<td>XXI</td>
</tr>
<tr>
<td>V. Quotes</td>
<td>XXIII</td>
</tr>
<tr>
<td>VI. Awards</td>
<td>XXIV</td>
</tr>
<tr>
<td>VII. Publications</td>
<td>XXV</td>
</tr>
<tr>
<td>VIIa. Refereed articles</td>
<td>XXV</td>
</tr>
<tr>
<td>VIIb. Abstracts</td>
<td>XXVI</td>
</tr>
<tr>
<td>VIII. Presentations</td>
<td>XXVIII</td>
</tr>
<tr>
<td>IX. Abbreviations</td>
<td>XXX</td>
</tr>
</tbody>
</table>

Chapter 1 Literature review

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Dendritic cell lineage</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Dendritic cell phenotypes</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1 Precursor blood dendritic cell</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1.1 Myeloid dendritic cells</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1.2 Plasmacytoid dendritic cells</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
1.3.2 Monocyte-derived dendritic cells ... 12

1.4 Specialised tissue dendritic cells .. 15

1.4.1 Non-lymphoid tissue dendritic cells ... 15

1.4.1.1 Skin dendritic cells .. 15

1.4.1.1.1 Langerhans cells ... 15

1.4.1.1.2 Dermal or interstitial dendritic cells 18

1.4.1.1.3 Plasmacytoid dendritic cells ... 19

1.4.1.2 Retinal dendritic cells .. 19

1.4.1.3 Liver dendritic cells .. 21

1.4.2 Lymphoid tissue dendritic cells .. 23

1.4.2.1 Thymic dendritic cells ... 23

1.4.2.2 Splenic dendritic cells ... 25

1.4.2.3 Lymph node dendritic cells .. 29

1.5 Stages of dendritic cell differentiation ... 32

1.5.1 Chemokine and chemokine receptor expressions 32

1.5.2 Antigen uptake by dendritic cells .. 39

1.5.2.1 Macropinocytosis ... 39

1.5.2.2 Adsorptive receptor-mediated endocytosis 39

1.5.2.2.1 C-type lectins ... 41
1.5.2.2 Fc receptors.................................44
1.5.2.3 Toll-like receptors..............................45
1.5.2.3 Other receptor-mediated phagocytosis..................49

1.6 Dendritic cell maturation and migration to secondary lymphoid organs....51

1.7 Antigen processing and presentation by dendritic cells....................57

1.8 Dendritic cell function..................................59

1.8.1 Cytokine production....................................59

1.8.1.1 Type I interferons..................................59

1.8.1.2 Interleukin-12......................................68

1.8.1.3 Interleukin-18......................................70

1.8.1.4 Interleukin-23......................................71

1.8.2 Innate pathway – cell interactions................................72

1.8.2.1 Natural killer cells.................................72

1.8.3 Adaptive pathway – cell interactions..............................75

1.8.3.1 T cells...75

1.8.3.2 B cells...78

1.8.3.3 Dendritic cells....................................79

1.9 The role of dendritic cells in infections..................................83

1.9.1 Dendritic cells and viral infections..............................84
1.9.2 Dendritic cells and bacterial infections............................... 92
1.9.3 Dendritic cells and fungal infections............................... 95
1.9.4 Dendritic cells and protozoan infections......................... 98
1.10 The role of dendritic cells in malignancies.......................... 101
1.11 The role of dendritic cells in transplantation....................... 113
1.11.1 Dendritic cells as initiators of transplant rejection.......... 113
1.11.2 Tolerance induction... 115
 1.11.2.1 Central tolerance.. 117
 1.11.2.2 Peripheral tolerance.. 119
 1.11.2.2.1 Generation of regulatory T cells....................... 119
 1.11.2.2.2 Generation of tolerogenic dendritic cells............. 125
 1.11.2.2.2.1 Pharmacological manipulation...................... 125
 1.11.2.2.2.2 Genetic engineering................................. 132
 1.11.2.2.3 Uptake of apoptotic bodies by dendritic cells........ 141
 1.11.2.2.4 Monoclonal antibodies targeting dendritic cell-specific antigens... 142
 1.11.2.2.5 Plasmacytoid dendritic cells......................... 143
1.12 The role of dendritic cells in chronic renal failure............. 145
1.13 Post-transplant lymphoproliferative disorder post-solid organ transplantation: role of dendritic cells and advances in pathogenesis and treatments .. 150

1.13.1 Incidence and risk factors of post-transplant lymphoproliferative disorder in solid organ transplant recipients ... 151

1.13.2 Pathogenesis of post-transplant lymphoproliferative disorder ... 152

1.13.3 Dendritic cells and the response to viral infection: a potential role for plasmacytoid dendritic cells in Epstein-Barr virus-driven post-transplant lymphoproliferative disorder ... 155

1.13.4 Clinical presentation of post-transplant lymphoproliferative disorder ... 158

1.13.5 Histological diagnosis and classification of post-transplant lymphoproliferative disorder ... 158

1.13.6 Non-invasive diagnosis ... 160

1.13.6.1 Polymerase chain reaction-based assays to detect EBV DNA load ... 160

1.13.6.2 Cytokine assays ... 161

1.13.6.3 Detection of monoclonal gammopathy ... 161

1.13.7 Treatment options ... 162

1.13.7.1 T cell therapies ... 162

1.13.7.1.1 Immunosuppression reduction ... 162
1.13.7.1.2 Adoptive immunotherapy using autologous or allogeneic EBV-specific cytotoxic T lymphocytes .. 165

1.13.7.1.2.1 EBV-seropositive recipients 165
1.13.7.1.2.2 EBV-seronegative recipients 166

1.13.7.2 B cell therapies .. 167

1.13.7.2.1 Anti-B-cell monoclonal antibodies 167
1.13.7.2.2 Cytotoxic chemotherapy 168
1.13.7.2.3 Surgery and radiotherapy 169

1.13.7.3 Cytokine therapies 169

1.13.7.4 Anti-viral therapies 170

1.13.7.5 Dendritic cell-based therapies 170

1.13.8 Conclusions .. 172

Chapter 2 Materials and Methods... 173-234

2.1 Methods ... 173

2.1.1 Isolation of peripheral blood mononuclear cells 173

2.1.2 Isolation of monocytes, T cells, and natural killer cells using automated magnetic cell separator (Automacs®) 174

2.1.3 Blood dendritic cell antigen (BDCA)-1 (CD1c) cells isolation using automated magnetic cell separator (Automacs®) 176

VI
2.1.4 Blood dendritic cell antigen (BDCA)-4 (neuropilin) cells isolation using automated magnetic cell separator (AutoMACS).

2.1.5 Generation of monocyte-derived dendritic cells.

2.1.6 Identification of dendritic cell subtypes by 3-colour flow cytometric analysis.

2.1.7 Dendritic cell enumeration kit.

2.1.8 Expression of HLA-DR, costimulatory molecules, CD95 and CD206 by 2-colour flow cytometric analysis.

2.1.9 Dendritic cell uptake of FITC-Dextran.

2.1.10 Staining for apoptotic cells and necrotic cells.

2.1.11 2-way Mixed Lymphocyte Reaction.

2.1.12 Natural killer cell cytotoxicity: lysis of 51Cr Chromium labelled K562 target cells.

2.1.13 Human fms-like tyrosine kinase-3 ligand immunosassay – enzyme linked immunosorbent assay.

2.1.15 Human interleukin-19 immunosassay – enzyme linked immunosorbent assay.

2.1.16 Human interleukin-12 immunosassay – enzyme linked immunosorbent assay.
2.1.17 Human interferon-alpha immunoassay – enzyme linked immunosorbent assay

2.1.18 Human interferon-gamma immunoassay – enzyme linked immunospot assay

2.1.19 Cell lines

2.1.19.1 K562 cell line

2.1.19.2 Marmoset B95.8 cell line

2.1.20 Establishing human mononuclear cells-lymphoma model

2.2 Reagents and Buffers

2.2.1 Monoclonal antibodies to detect dendritic cell-surface molecules

2.2.2 Cell isolation

2.2.3 Cytokine detection and quantification in serum or cell culture supernatant by enzyme-linked immunoassorbent assay (ELISA)

2.2.4 Detection of interferon-gamma-producing cells by enzyme linked immunospot assay (ELISpot)

2.2.5 Detection of apoptotic/dead cells

2.2.6 Transwell filter assays

2.2.7 Chromium-release assays

2.2.8 Two-way mixed lymphocyte reaction
2.2.9 Cell lines and virus source .. 226
2.2.10 Non-obese diabetic severe combined immunodeficient (NOD-SCID) mice experiments 226
2.2.11 Sera .. 227
2.2.12 Stimulatory or inhibitory agents 227
2.2.17 Miscellaneous .. 227
2.2.14 Prepared buffers and solutions 230
2.2.15 Equipments ... 231
2.2.16 Manufacturers .. 232

Chapters 5 Renal transplantation reverses functional deficiencies in circulating dendritic cell subsets in chronic renal failure patients .. 235-280

3.1 Introduction .. 235
3.2 Materials and methods .. 237
3.2.1 Study population ... 237
3.2.2 Reagents ... 241
3.2.3 Cell isolation and staining ... 241
3.2.4 Measurement of serum granulocyte macrophage-colony stimulating factor and fms-like tyrosine-3 kinase ligand .. 242
3.2.5 Kinetic analysis of dendritic cell subsets post transplantation .. 242
3.2.6 Isolation and functional analysis of precursor myeloid and plasmacytoid dendritic cells in haemodialysis patients and renal transplant recipients ..243

3.3 Statistical analysis ..244

3.4 Results ..245

3.4.1 Dendritic cell subset identification ..245

3.4.2 Incidence of circulating precursor dendritic cell subsets in peripheral blood ..249

3.4.3 Serum levels of haematopoietic growth factors (granulocyte macrophage-colony stimulating factor and fms-like tyrosine-3 kinase ligand) ...252

3.4.4 Functional studies of myeloid and plasmacytoid dendritic cells from haemodialysis patients and renal transplant recipients252

3.4.5 Precursor myeloid dendritic cells but not precursor plasmacytoid dendritic cells correlate with glomerular filtration rate259

3.4.6 Renal transplant recipients - influence of immunosuppressive drugs ..263

3.4.6.1 Prospective kinetics of dendritic cell subsets post-renal transplantation ..263

3.4.6.2 Effects of immunosuppressive drug types on dendritic cell subsets ..263

X
3.4.6.2.1 Calcineurin inhibitors (cyclosporine or tacrolimus)..263

3.4.6.2.2 Corticosteroids..267

5.4.6.2.3 Other immunosuppressive drugs...271

3.4.7 Renal transplant recipients ≥15 years exhibit a higher precursor plasmacytoid:precursor myeloid dendritic cell ratio...274

3.5 Discussion...276

Chapter 4 Renal failure impairs blood monocytes and monocyte-derived dendritic cell function...281-326

4.1 Introduction..281

4.2 Materials and methods..283

4.2.1 Study population...283

4.2.2 Reagents..284

4.2.3 Quantification of IL-12p70 titre in anaemic serum obtained from haemodialysis patients using ELISA...285

4.2.4 Isolation of monocytes and monocyte-derived dendritic cells from healthy blood donors cultured in complete and anaemic mediums...285

4.2.5 Functional analysis of normal monocytes and monocyte-derived dendritic cells from healthy blood donors cultured in complete and anaemic mediums..286

XI
4.2.6 Effects of urea on monocyte-derived dendritic cell functions... 287

4.2.7 Isolation and functional analysis of uraemic monocytes and monocyte-derived dendritic cells from haemodialysis patients... 287

4.3 Statistical analysis.. 287

4.4 Results... 288

4.4.1 Monocytes.. 288

4.4.1.1 Haemodialysis patients have normal peripheral blood monocyte counts but elevated IL-12p70 in the serum... 288

4.4.1.2 Normal monocyte functions............................ 288

4.4.1.3 Uraemic medium inhibits normal monocyte functions... 292

4.4.1.4 Uraemic monocytes from haemodialysis patients are functionally abnormal.................................. 295

4.4.2 Monocyte-derived dendritic cells............................. 298

4.4.2.1 Normal monocyte-derived dendritic cell functions..... 298

4.4.2.2 Uraemic medium does not affect the differentiation of monocytes into monocyte-derived dendritic cells but inhibits monocyte-derived dendritic cell functions............. 303

4.4.2.3 High concentrations of urea inhibit normal monocyte-derived dendritic cell functions........................... 309

4.4.2.4 Uraemic monocyte-derived dendritic cells of haemodialysis patients are functionally abnormal...................... 316

XII
Chapter 5 More efficient clearance of uraemic toxins improves deficiencies of circulating blood myeloid dendritic cells in haemodialysis patients. 327-376

5.1 Introduction 327

5.2 Materials and methods 328

5.2.1 Study population 328

5.2.2 Reagents 329

5.2.3 Measurements of IL-12p70 in the serum of haemodialysis patients and healthy controls 330

5.2.4 Identification of precursor myeloid and plasmacytoid dendritic cells in the peripheral blood of haemodialysis patients and healthy controls 330

5.2.5 Isolation of myeloid and plasmacytoid dendritic cells from healthy blood donors cultured in complete and uraemic mediums 330

5.2.6 Functional analysis of normal myeloid and plasmacytoid dendritic cells from healthy blood donors cultured in complete and uraemic mediums 331

5.2.7 Effects of small, middle, and large molecular weight (MW) uraemic toxins on myeloid and plasmacytoid dendritic cell functions 331

5.2.8 Effect of more efficient dialysis on dendritic cell functions 332
5.3 Statistical analysis...333

5.4 Results..333

5.4.1 Haemodialysis patients have reduced relative incidence of
 circulating precursor plasmacytoid dendritic cells but have a
 higher serum levels of IL-12p70...333

5.4.2 Myeloid dendritic cells..334

5.4.2.1 Normal myeloid dendritic cell functions.................................334

5.4.2.2 Uraemic medium inhibits normal myeloid dendritic cell
 functions...338

5.4.2.3 Small and large molecular weight uraemic toxins inhibit
 normal myeloid dendritic cell functions.....................................343

5.4.2.4 Uraemic myeloid dendritic cells of haemodialysis patients
 are functionally abnormal...353

5.4.3 Plasmacytoid dendritic cells..359

5.4.3.1 Normal plasmacytoid dendritic cell functions..........................359

5.4.3.2 Uraemic medium including small/medium and large
 molecular weight uraemic toxins inhibit normal
 plasmacytoid dendritic cell functions.......................................359

5.4.3.3 Uraemic plasmacytoid dendritic cells of HD patients are
 functionally abnormal..362

5.4.4 Effect of more efficient dialysis on dendritic cell functions........362

XIV
5.4.4.1 Improved dialysis clearance can reverse the inhibitory effects of uraemic serum on myeloid but not plasmacytoid dendritic cell function .. 362

5.4.4.2 Improved dialysis clearance can reverse the intrinsic defect of uraemic myeloid dendritic cell functions .. 367

5.5 Discussion ... 371

Chapter 6
Human plasmacytoid dendritic cells regulate immune responses to Epstein-Barr virus (EBV) infection via toll-like receptor-9 signaling and delay EBV-related mortality in humanized NOD-SCID mice ... 377-429

6.1 Introduction .. 377

6.2 Materials and methods ... 379

6.2.1 Reagents .. 379

6.2.2 Humanised non-obese diabetic severe combined immunodeficient (NOD-SCID) mouse model of Epstein-Barr virus infection and lymphoproliferative disease .. 380

6.2.3 Mechanisms of plasmacytoid dendritic cell response to Epstein-Barr virus .. 386

6.2.3.1 Cytokine production, co-stimulatory molecule expression and allo-stimulatory capacity of plasmacytoid dendritic cells following Epstein-Barr virus stimulation .. 386

XV
6.2.3.2 Natural killer cells cytolytic activity in response to Epstein-Barr virus-stimulated plasmacytoid dendritic cells determined by chromium-51 release assay. 387

6.2.3.3 Induction of IFN-γ-producing T and natural killer cells by Epstein-Barr virus-stimulated plasmacytoid dendritic cells determined by ELISPOT. 388

6.2.3.4 Influence of Toll-like receptor 9 inhibition on the induction of IFN-γ-producing T and natural killer cells. 390

6.3 Statistical analysis. 390

6.4 Results. 391

6.4.1 Depletion of plasmacytoid dendritic cells enhances mortality from disseminated Epstein-Barr virus infection in the latent infection model. 391

6.4.2 Plasmacytoid dendritic cells enrichment significantly delayed mortality from Epstein-Barr virus-related lymphoma in the active infection model. 394

6.4.3 The response of plasmacytoid dendritic cells to Epstein-Barr virus. 401

6.4.3.1 Normal plasmacytoid dendritic cell function in response to herpes-simplex virus-1 stimulation. 401

XVI
6.4.3.2 Epstein-Barr virus stimulates IFN-γ and IL-10 production and promotes the phenotypic maturation of plasmacytoid dendritic cells.

6.4.3.3 Epstein-Barr virus-stimulated plasmacytoid dendritic cells induce the activation of natural killer and T cells that is dependent on cell contact.

6.4.4 Epstein-Barr virus-stimulated plasmacytoid dendritic cells promote the induction of IFN-γ-producing cells that is dependent on toll-like receptor-9 signalling.

6.5 Discussion

Chapter 7 Conclusion

Chapter 8 References

Appendix
Abstract

Immune protection against pathogens in humans relies on a coordinated response of both innate and adaptive immune systems. Dendritic cells (DCs) are a group of rare, heterogeneous population of professional antigen-presenting cells that can initiate primary immune responses, and hence have the ability to regulate both innate and adaptive immune responses. There are two clinically relevant DC subsets: myeloid DCs (MDCs) and plasmacytoid DCs (PDCs), which are crucial in antibacterial, antiviral, and antitumour immunity. Precursor DCs are generated from haematopoietic progenitor cells in the bone marrow, and enter tissues as immature DCs. They encounter foreign antigens (e.g., bacteria, tumour antigens) resulting in the secretion of various cytokines (e.g., interferon [IFN]) leading to activation of cells, including natural killer (NK) cells, macrophages, and eosinophils. Following antigen capture and processing, DCs undergo maturation and subsequently migrate to secondary lymphoid tissues where they present processed antigen-peptide complexes to major histocompatibility complexes (MHC), which allow for selection and expansion of antigen-specific CD4 T-helper cells to eliminate the invading pathogens. DCs have not been extensively studied in chronic renal failure (CRF) patients, including those maintained on dialysis and renal transplantation. We hypothesized that CRF patients maintained on renal replacement therapies, including dialysis and renal transplant patients, have a functional deficiency in circulating blood DCs predisposing these patients to a higher rate of clinical infections and malignancies. From our studies, we determined that circulating PDCs, but not MDC precursors, are reduced in numbers in the peripheral blood of dialysis and transplant patients. MDCs isolated from dialysis patients were functional abnormal, attributed to the presence of soluble uraemic...
toxins (including small and large molecular weight toxins) present in the serum of these patients. In contrast, MDC isolated from renal transplant patients were functionally normal and the numbers and function of these cells correlated with renal function (measured as glomerular filtration rate). We then demonstrated that more efficient dialysis to enhance clearance of uraemic toxins in haemodialysis patients resulted in the reversal of MDC (but not PDC) functional impairment. We next investigated whether the reduction in PDC in transplant patients predisposes to Epstein-Barr virus (EBV) associated disorders. To address this question, a humanised immunodeficient non-obese diabetic severe combined immunodeficient (NOD-SCID) mouse model was established. NOD-SCID mice reconstituted with human mononuclear cells depleted of PDC had significantly enhanced mortality from disseminated EBV infection, whereas mice reconstituted with mononuclear cells enriched with PDC had significantly delayed mortality from EBV-induced lymphoproliferative disease. We next investigated the mechanisms underlying anti-EBV immunity. In response to EBV, PDC were able to activate innate immunity (secretion of IFN-α and activating NK cells) and adoptive immunity (activating T cells) that is dependent on toll-like receptor signaling. We show for the first time that EBV signals through TLR-9-dependent mechanism. Our studies have demonstrated that DC deficiencies are prevalent in dialysis and transplant patients, which may be partially improved with more efficient dialysis or achieving normal renal function through transplantation. We have also shown that PDC deficiency is crucial in anti-viral immunity in transplant patients and strategies to augment PDC numbers and function in these patients are warranted.